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Abstract 
 
We investigate the evolution of structures that result when spherical Cd nanoparticles of a 

few hundred nanometers in diameter react with dissolved molecular sulfur species in 

solution to form hollow CdS.  Over a wide range of temperatures and concentrations, we 

find that rapid Cd diffusion through the growing CdS shell localizes the reaction front at 

the outermost CdS/S interface, leading to hollow particles when all the Cd is consumed. 

When we examine partially reacted particles, we find that this system differs significantly 

from others in which the nanoscale Kirkendall effect has been used to create hollow 

particles.  In previously reported systems, partial reaction creates a hollow particle with a 

spherically symmetric metal core connected to the outer shell by filaments.  In contrast, 

here we obtain a lower symmetry structure, in which the unreacted metal core and the 

coalesced vacancies separate into two distinct spherical caps, minimizing the metal/void 

interface. This pattern of void coalescence is likely to occur in situations where the 

metal/vacancy self-diffusivities in the core are greater than the diffusivity of the cations 

through the shell. 
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Since the first report in 2004,1 the formation of hollow nanoparticles via the 

nanoscale Kirkendall effect has been observed in dozens of materials.2-5 In the simplest 

scenario, an elemental metallic nanocrystal reacts to form a compound nanoparticle; 

hollow, polycrystalline nanoparticles result when the diffusion of the cationic species 

outwards is faster than the inward diffusion of the anionic species. Some examples of 

hollow particles formed in this way include oxides, sulfides, selenides, and phosphides of 

cobalt, iron, molybdenum, and nickel. Fan, Gösele, and Zacharias have written a recent 

review outlining developments in this field,2 as well as describing criteria that can be 

used to evaluate the possibility that a given system will form hollow particles by this 

mechanism. 

In materials with one or more macroscopic dimensions, like nanowires or films, 

the Kirkendall effect leads to the formation of multiple voids at the metal–composite 

interface.6, 7 In nanoparticles, a single void is typically observed in the center of the 

particle when the reaction is complete, and the particles maintain an overall approximate 

spherical symmetry through the course of the reaction.3, 8 In such spherical 

nanostructures, the unreacted metal core remains in the center and is connected to the 

hollow shell by thin filaments.1, 9 In a very recent report, Nakamura et al. already showed 

that the incomplete oxidation of Ni nanoparticles leads to the formation of partially 

hollow structures with a single void.10 On fully oxidized NiO particles, holes were 

located at off-center positions and non-homogeneous shell thicknesses were obtained. 

Here we explore the sulfidation of spherical cadmium crystals to form hollow CdS via the 

nanoscale Kirkendall effect, Figure 1. Cadmium sulfide, having both direct band gaps in 

the optical region and piezoelectric properties, is particularly suited for optical, 

optoelectronic, and electromechanical applications. In the cadmium sulfidation reaction, 

the metal self-diffusion time in the core is much lower than the self-diffusion time of the 

metal ions through the shell. We show that the structures obtained from the partial 

sulfidation of Cd particles contain a single off-center void region and a single off-center 

region of unreacted Cd, both with a spherical cap geometry. Markedly, in spite of the 

asymmetrical metal distribution in this new type of structure, a homogeneous growth of 

the CdS shell is observed throughout the entire particle as the sulfidation proceeds to 

completion. We measured the growth rates of CdS as a function of the reaction 
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temperature and the sulfur concentration, and have estimated the Cd self-diffusivity in the 

CdS shells. This estimate allows for a self-consistent explanation of the mechanism of 

formation of the Cd/CdS heterostructures; the calculated diffusion coefficient is used to 

discriminate between the mechanisms of Cd transport through the CdS shell. 

Figure 1. Schematic of the sulfidation process of Cd nanoparticles. Solid cadmium 

particles (left) are exposed to elemental sulfur leading to partially sulfidized structures, 

with a Cd core remaining inside a polycrystalline Cd sulfide shell (center). Longer 

reaction times lead to fully hollow CdS structures (right).  

 

RESULTS AND DISCUSSION 

Solid cadmium particles were synthesized by the decomposition of dimethylcadmium in 

trioctylphosphine oxide (TOPO) at 330 °C under air-free conditions. In the absence of 

oxidizing elements, dimethylcadmium decomposes to form colloidal Cd0. At 

temperatures below the melting point of cadmium (Tm = 321 °C), cadmium particles 

appear highly faceted, having hexagonal geometries. Above its melting point, cadmium 

forms spherical droplets in the liquid phase, and these solidify into spherical Cd particles 

as the temperature is decreased. The size of the cadmium particles can be tuned in the 

diameter range between 100 nm and 1 µm by the concentration of the injected solution 

and the stirring rate.11 The resulting Cd nanoparticles are monocrystalline, as deduced 

from both electron diffraction and dark field transmission electron microscopy (TEM) 

(Supporting Information, Figure 1).  

Sulfidation of colloidal Cd crystals was performed by the injection of elemental 

sulfur dissolved in 1,2–dichlorobenzene into a solution of colloidal Cd. Sulfidation was 

carried out in the temperature range of 200–300 °C, and with sulfur to cadmium ratios 

([S]/[Cd]) in the range of 1–12. The actual concentration of sulfur in solution will be 

S S
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lower than the nominal concentration injected, as a perceptible percentage of sulfur may 

react with the solvent impurities. Moreover, a slight reduction of the sulfur concentration 

with time is to be expected from the combination of the high vapor pressure of sulfur at 

the reaction temperature (~1 kPa) and the use of continuous flow of argon in the 

experimental set-up.  

Transmission electron microscopy was used to follow the progressive sulfidation 

of the spherical Cd particles, Figure 2. We observe that, upon sulfur introduction, a 

uniform and polycrystalline CdS shell forms at the outer surface of the Cd particle, and as 

the sulfidation proceeds, the shell grows outward from the CdS/solution interface, as 

observed from the evolution of the thickness and the outer diameters of the shell, Figure 

3. This external growth requires the diffusion of Cd through the CdS shell and therefore, 

an inward diffusion of the equivalent number of vacancies follows to counterbalance the 

outward diffusion of matter. In the initial stages of Cd sulfidation, vacancies coalesce into 

voids extending all over the Cd/CdS interface, Figure 2B. However, in a slightly 

advanced stage of sulfidation, vacancies are found to coalesce into a single void with 

spherical cap shape adhering to one side of the interior hollow CdS shell, Figures 2C–E. 

In spite of this asymmetric Cd distribution, the spherical CdS shell still grows 

isotropically. Tilting of the sample holder inside the TEM allows us to confirm that the 

Cd in the partially converted particles assembles in a spherical cap shape, Figure 4. As 

the sulfidation proceeds, the Cd core is consumed through its free interface in a similar 

way as the liquid level in a container is reduced while preserving a flat surface. However, 

the intuitive image of a molten Cd core inside the shell at the reaction temperature, which 

then solidifies upon cooling, has been definitively ruled out, using differential scanning 

calorimetry (DSC) analysis of the intermediate heterostructures. In Figure 5, DSC data 

show that the melting temperature of the spherical Cd caps inside the CdS shell is 

approximately equal to that of bulk Cd (321 °C), well above the sulfidation temperatures 

used (200–300 °C). 
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 Figure 2. TEM micrographs from 6 aliquots at different stages of the CdS shell growth; 

from the initial Cd particles (A) to the final CdS hollow particles (F). The scale bar 

corresponds to 500 nm. 

 

Figure 3. Particle diameter and shell thickness distributions from 6 aliquots at different 

stages of the CdS shell growth: from the initial Cd particles (bottom histograms) to the 

final CdS hollow particles (top histograms). 
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Figure 4. TEM micrographs at different tilting angles of the same partially reacted 

Cd/CdS particle. 

Figure 5. Differential scanning calorimetry (DSC) analysis of the intermediate Cd/CdS 

particles. The endothermic peak at ~ 320ºC corresponds to the melting of the Cd cores 

inside of the CdS shells.  Inset: TEM micrograph of the partially hollow Cd/CdS 

nanoparticles analyzed by DSC. 
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It is interesting to consider the complex balance of thermodynamic and kinetic 

factors at play in the formation of the spherical caps during the partial sulfidation.  Three 

interface energies play a critical role in this system: core/shell, core/void, and void/shell. 

Here, the coalescence of the Cd into a single spherical cap minimizes the interface 

between the metal and the surrounding void/medium,12 Figure 5. This indicates that the 

metal/void interface is the highest energy interface in the system. Both Cd cations and 

vacancies must diffuse quickly through the shell to account for the homogeneous feeding 

of the growing CdS shell.  The geometry of the metal core in partially oxidized particles 

can be thermodynamically directed only for long enough reaction times, as compared to 

the diffusion time of the core element.  If we consider the reaction time to be limited by 

the diffusivity of the metal through the shell, this condition can be expressed as a ratio of 

self-diffusivities. Consider Arrhenius expressions for both self-diffusivities, with D0S, 

D0C, EC and ES being the self-diffusivity constants and activation energies of the metal or 

metal ions through in the core and the shell. The condition for the formation of metal 

spherical caps instead of bridge-supported cores can be expressed as the following rate 

between the metal diffusion time in the core (tC) and its diffusion time through the shell 

(tS) : 

 

   (1) 

 

where: 

 

(2) 

 

accounts for the different diffusion length of the metal in the core and the ions in the 

shell, θ  being the molar volume ratio between the initial and final structure, also known 

as the Pilling-Bedworth ratio.  

Extrapolation of self-diffusivity values previously reported in the literature 

suggests that the sulfidation of cadmium should indeed satisfy the conditions of equation 

(1).  The Cd self-diffusivity is estimated to be much faster in the core than through the 

CdS shell (Table 1). This is consistent with our experimental results, where the metal 

( )( )11

1

3
1
−+

=
θ

A



 8 

keeps a thermodynamically favorable shape while supporting an effective and uniform 

sulfidation reaction. The same argument applies for the oxidation of Zn particles, for 

example. On the other hand, in the sulfidation and oxidation of Co, and in the oxidation 

of Fe, the faster self-diffusion of ions through the shell than in the core, leads to the 

formation of kinetically controlled Co/CoxSy and Fe/FexOy nanostructures, with spherical 

cores supported by bridges, and with very high metal/void interface areas.1, 3  

 

Table 1. Metal Diffusion Coefficients [ )/exp(0 kTEDD −= ].13  

Element TM (°C)a D0 (cm2s-1) E (eV) T (°C)b D200 (nm2s-1)c 

In 157 3–4 0.8 39–144 ~105 (T = 150 °C) 

Sn 232 1–20 1.0–1.1 160–228 ~103 

Cd 321 0.05–0.7 0.8–0.9 77–315 ~104 

Zn 420 0.1–0.6 0.9–1.1 240–418 ~102–103  

Al 660 0.1–2 1.3–1.5 85–643 ~10-2–10-1 

Cu 1085 0.1–1 2.0–2.2 301–1082 ~10-10–10-8 

Ni 1455 1–3 2.9–3.1 475–1404 ~10-8–10-7 

Co 1495 0.2–2 2.7–3.2 623–1472 ~10-19–10-16 

Fe 1538 0.2–10 2.5–3.2 697–1508 ~ 10-20–10-12 

Ti 1668 10-7–10-3 1.3–1.8 690–1583 ~ 10-9–10-4 

 
a Melting temperature;  
b Temperature range of the measurement;  
c Extrapolation of the diffusion coefficient to 200 °C. 

 

The self-diffusivity values reported in the literature are measured at temperatures 

well above those used here, and using macroscopic crystals. Diffusivities strongly depend 

not only on the temperature but also on the microstructure, composition, and potentially 

also the overall dimension of the sample.  Thus, the self-diffusion values extrapolated 

from literature values may differ significantly from those in the polycrystalline shells and 

at the temperatures considered here. Furthermore, the ion self-diffusivity may not be the 

limiting parameter on the growth/reaction rate, but the reaction time may be much larger 
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due for example to a limited supply of the oxidizing element in solution. Here we show 

that a more comprehensive study of the hollow nanoparticle evolution itself can be used 

to provide a direct measure of some of the self-diffusivities at work in this experiment.  

The present system offers the opportunity to directly measure the kinetics of the 

sulfidation process at the nanoscale. X-ray diffraction (XRD) was used to quantitatively 

follow the sulfidation process by removing aliquots at successive times after the sulfur 

injection, Figure 6. The CdS shell growth rate can be calculated by monitoring the 

appearance of CdS as a function of time with a concomitant decrease in the Cd. Figure 

7A shows the fraction of CdS obtained from the reaction of 350 nm Cd particles with 

different nominal sulfur concentrations. It is striking that the reaction rate is strongly 

affected by small changes in the amount of added sulfur only at low sulfur 

concentrations. At the crossover of reaction regimes the sulfur to cadmium ratio is 

[S]/[Cd] = 6. At lower sulfur concentrations, we believe the sulfur reaction probability or 

its diffusion to control the reaction rate. In order to discern between these two 

mechanisms, we can obtain the order of magnitude of the sulfur reactivity. We consider 

the most abundant molecular form of sulfur in solution to be S8.
14 The approximated 

diffusion constant of these molecules, as given by the Stokes-Einstein relation with a 

solvent mobility of 0.1 Pa·s, is on the order of 107 nm2s-1. At a sulfur to cadmium ratio of 

[S]/[Cd] = 4, the complete sulfidation of 350 nm Cd particles takes place in around 40 

min at 240 ºC. This sulfur concentration in solution, [S8] ~ 0.02 nm-3, translates into a 

collision rate of around 6 × 108 nm-2s-1. From the sulfidation time, we deduce that the 

flux of Cd through the shell is around 2 atoms nm-2s-1. Thus the reaction probability of 

the S8 molecules probing the surface of the CdS with the diffusing Cd atoms is on the 

order of 10-7. From this estimation of the order of magnitude of the reaction probability, 

we conclude that the concentration of sulfur around the particles does not perceptibly 

change because of its reaction with the Cd, which rules out the S diffusivity as the 

limiting rate factor. It is therefore the low reaction probability that controls the rate of 

sulfidation of the Cd particles at sulfur concentrations lower than [S]/[Cd] = 6. 
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Figure 6. Evolution of the X-ray diffraction patterns of the hollow CdS particles, from 

the initial Cd particles (bottom pattern) to the final CdS hollow particles (top pattern). 

 

Figure 7. Time evolution of the fraction of CdS formed from the reaction of 350 nm 

cadmium particles. (A) The reaction temperature is set to 240 ºC, while the nominal 

sulfur concentration is changed as specified in the graph. (B) The nominal sulfur 
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concentration is set to [S]/[Cd] = 8, while the reaction temperature is changed as 

specified in the graph. 

At higher sulfur concentrations, the shell growth rate is independent of the 

amount of sulfur in solution. In this reaction regime, the collision frequency is large 

enough to lead to the prompt reaction of every Cd reaching the shell outer surface, even 

though the reaction probability is low. This is confirmed by using TEM to monitor in situ 

the disappearance of the Cd core when heated in high vacuum, Figure 8. TEM studies 

confirm that the Cd core disappears on the same time scale as the growth of the shell. As 

noted above, the Cd self-diffusion inside the void is very fast when compared with the 

shell growth rate (Table 1). Thus, we consider the Cd diffusivity through the shell, either 

in a neutral or ionized form, as the limiting rate in this reaction regime.   

 

Figure 8. TEM micrographs of different stages of the vaporization of the cadmium cores 

inside thin CdS shells at 285ºC. Scale bar corresponds to 1 µm. 

The oxidation kinetics of metal films controlled by the diffusion of one of the 

reactants usually results in parabolic rates. By considering the diffusivity of one of the 

A CB

FED
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ionized reactants to be driven by local electric fields, Cabrera and Mott have estimated 

the following parabolic dependence of a metal oxide film growth rate:15 

(3) 

where l is the thickness of the grown film, Di is the diffusion coefficient for metal ions, Ω 

is the volume of oxide grown per metal ion, and n(0)–n(l) is the difference in the 

concentration of dissolved diffusing ions between the inner and the outer surface of the 

film.  A similar dependence can be derived when considering the diffusion of neutral 

species as being driven by concentration gradients. From the general problem of diffusion 

with discontinuous boundaries, solved by Hermans for the specific case of diffusion with 

precipitation,16 the following dependence is obtained: 

(4) 

where D is the diffusion coefficient of the diffusing substance in the medium, and B is 

given by: 

(5) 

with a being the concentration of diffusing particles at x = 0, and b as the concentration 

of binding sites. 

The time evolution of the Cd to CdS conversion obtained from the reaction of 350 

nm Cd particles with a nominal sulfur concentration [S]/[Cd] = 8 is shown in Figure 7B. 

In Figure 9, the shell thickness is calculated from the measured CdS fraction and is 

plotted as a function of the square root of the reaction time at different reaction 

temperatures. At low reaction times a linear dependence, which flattens at high CdS:Cd 

ratios, is obtained. 
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Figure 9. Time dependence of the square of the shell thickness for different reaction 

temperatures: 220 ºC (black), 240 ºC (red), 260 ºC (green) and 280 ºC (blue). The 

nominal concentration of sulfur is set to a ratio [S]/[Cd] = 8. The lines correspond to 

linear fittings of the data points. The inset shows the Arrhenius plot of the obtained 

diffusion coefficients for the two models described in the text. 

The linear data regimes in Figure 9 were fitted to expressions (1) and (2). The reasonably 

good fit of the data obtained from the growth of spherical shells to the expressions 

describing growth rates in planar geometry is not surprising when considering the 

moderate increase in the particle diameter with the oxidation process. However, a better 

estimation of the diffusion coefficients by this method should introduce corrections for 

this spherical geometry. 

To determine the diffusion coefficient from these fits, the concentration of 

dissolved cadmium in the inner surface was approximated to the concentration of Cd in 

the CdS lattice. Both Cabrera-Mott and Hermans models, considering charged or neutral 

diffusing species respectively, lead to very similar Cd self-diffusivities with identical 
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temperature dependences (inset, Figure 9). From the diffusion coefficients obtained for 

the different reaction temperatures, the following estimation of the Arrhenius dependence 

of the Cd diffusion coefficient (m2s-1) was obtained:  

D = D0 exp(-E / kT) = 1×10-6 exp(1.1 eV / kT) 

The values reported in the literature for the diffusivity of Cd and S in CdS crystal lattices 

are compared to those obtained in the present work in Table 2. The pre-exponential 

factor, D0, obtained here is inside the large range of values previously measured for a 

variety of systems. The activation energy calculated in the present work is just half of that 

reported in previous studies. Such low activation energy is consistent with the 

polycrystalline nature of the CdS shells. It is well known that diffusion coefficients in 

nanocrystalline materials can be orders of magnitude larger than in their bulk 

counterparts.17 Grain boundaries provide easy paths for ion movement, and thus 

activation energies for grain boundary diffusion are often much lower than those for 

intrinsic bulk lattice diffusion.18, 19 Therefore, our studies confirm grain boundary 

diffusion of ionized or neutral cadmium as the dominant mechanism for cadmium 

transport through the shell. This diffusion mechanism is associated with a strong 

dependence of the growth rate on the shell nanostructure. Furthermore, the Cd diffusivity 

through the shell obtained by our estimation is approximately four orders of magnitude 

slower than the cadmium self-diffusivity. We believe this large difference to be the 

reason behind the thermodynamic accommodation of the core inside the shell. 

 

Table 2. Cd and S Self-Diffusion Coefficients in CdS [ )/exp(0 kTEDD −= ].20 

Reference Diffusing 
Element T (K) D0 (m

2s-1) E (eV) 

Present work Cd 493–553 1 × 10-6 1.1 

H. H. Woodbury21 Cd 793–1373 3.4 × 10-4 2.0 

D. Shaw22 Cd 773–973 6.7 × 10-2 2.67 

D. Shaw22 Cd 973–1123 5.8 × 10-6 1.85 

E. D. Jones23 Cd 875–1528 1.2 × 10-4 2.3 
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V. Kumar and F. A. Kroger24 Cd 973–1273 3.3 × 10-6 2.0 

E. D. Jones et al.25 Cd 1053–1550 4.2 × 10-6 1.90 

E. D. Jones et al.25  Cd 870–1053 5.2 3.18 

L. A. Sysoev et al.26 Cd 1023–1323  2.4 

V. Kumar and F. A. Kroger24 S 1073–1173 1.6 × 10-6 2.08 

 

Conclusions 

We have investigated the sulfidation reaction of 350 nm Cd particles. Our studies 

reveal that Cd diffuses more rapidly than S through the polycrystalline shells that result 

from the reaction of Cd with S. This high Cd diffusivity leads to the accumulation of 

vacancies at the metal/sulfide interface, and eventually to the de-cohesion of the growing 

CdS shell. Through control of the reaction time, reaction temperature, and Cd/S ratio, the 

particle morphology could be shifted from metal-void-shell structures containing the 

unreacted metal localized in a single core attached to the CdS shell, to completely hollow 

CdS structures. In contrast to previously described systems, here in partially sulfided Cd 

particles, a single Cd core is observed and its interface with the void is minimized with a 

spherical cap geometry. This particular arrangement of the core metal is explained by the 

different time scales of Cd diffusion inside the particle and across the shell.  Such a 

system offers a unique opportunity to estimate diffusion coefficients at relatively low 

temperatures. At high sulfur concentrations, the growth rate is limited by the Cd diffusion 

rate through the shell, which was estimated to be D = 1×10-6 exp(1.1 eV / kT). The 

activation energy obtained from this approach is lower than that measured at higher 

temperatures for lattice diffusion. This deviation is consistent with the polycrystalline 

nature of the formed CdS shells. At the same time, the estimated Cd self-diffusion in the 

CdS shells is much lower than the Cd metal self-diffusion. This is consistent with the 

considered mechanism controlling the unreacted metal geometry and the simultaneous 

homogeneous growth of the shell. 
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METHODS 

Synthesis.  Solid cadmium particles were obtained by decomposition of 

dimethylcadmium (97%, Strem) in trioctylphosphine oxide (TOPO, 99%, Sigma-

Aldrich). Dimethylcadmium was distilled prior to use, and stored below its melting point 

in an argon-filled glovebox. In a typical synthesis, 8 g of TOPO were heated inside a 

three-neck flask to 60°C under vacuum for 30 min. While keeping the solution under 

argon (99.999%), the temperature was raised to 330 ºC. A precursor solution of 0.1 g of 

dimethylcadmium in 1 ml of trioctylphosphine (TOP, 97%, Strem) was prepared 

separately under Ar. This mixture was rapidly injected through a septum into the hot 

solution with vigorous stirring. The decomposition of the dimethylcadmium is 

instantaneous, and leads to the formation of colloidal Cd particles. When formed above 

the cadmium melting temperature (Tm = 321 ºC), these Cd particles have a spherical 

symmetry. Following the injection, the temperature dropped to around 320 ºC, and then 

slowly recovered to 330 ºC. The solution was kept at a temperature between 320 ºC and 

330 ºC for around 30s, and was then rapidly decreased to quench the spherical geometry 

of the liquid drops. 

To sulfidize the colloidal Cd crystals, a 30% sulfur solution was prepared inside 

the glovebox by dissolving  0.4 g of elemental sulfur (99.998%, Aldrich) in 10 mL of 

anhydrous 1,2–dichlorobenzene (99%, Aldrich). Dissolution was carried out using a 

heated ultrasound sonicator, while keeping the sample closed in air-free conditions inside 

a vial accessible through a septum. The sulfur solution has a dark-brown color. Between 

0.5 mL and 6.7 mL of this solution were injected through a septum into the hot solution 

containing the Cd crystals. The reaction temperature was set between 200°C and 300°C. 

After injection, the temperature drops a certain amount, depending on the injected 

volume, but is quickly raised as part of the injected dichlorobenzene is removed by 

evaporation. The sulfidation requires anywhere from a few minutes to hours, and can be 

qualitatively monitored from the solution’s change in color from grey to orange. 

Characterization.  The crystal structure of the samples was characterized using powder 

X-ray diffraction. XRD analyses were obtained on a Bruker AXS diffractometer using Co 

Kα radiation (1.79026 Å) and a general area detector. The instrument resolution was 
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0.05° in 2θ, and the acquisition time for each sample was around 1 hour. XRD samples 

were prepared in air by depositing the precipitated particles on a quartz substrate.  XRD 

was also used to quantitatively follow the sulfidation process. 0.3 mL aliquots were 

removed through the septum at successive times after the sulfur injection. These aliquots 

were immediately dissolved in chloroform at room temperature and cleaned by 

centrifugation to remove excess sulfur in solution. The dried samples were immediately 

characterized by means of XRD and TEM. For the purpose of a quantitative analysis of 

the cadmium to cadmium sulfide conversion, we integrated the XRD diffraction patterns 

obtained from the analysis of the successive aliquots. We compared the area of the CdS 

(100), (002) and (101) diffraction peaks with that of the (101) Cd peak. A sample 

containing a 50% of as-synthesized Cd particles and a 50% of fully reacted CdS hollow 

particles was used as a reference to determine the ratio of the x-ray diffraction factors for 

the mentioned lattice interspacings of Cd and CdS. This ratio (0.275) was used to 

quantitatively follow the Cd to CdS conversion from the integrated areas: 

[CdS]/([Cd]+[CdS]) = ACdS/(0.275·ACd+ACdS) 

TEM micrographs were obtained using a Tecnai G2 S-Twin electron microscope (200 

kV). TEM samples were prepared by placing a drop of the colloidal solution containing 

the nanoparticles onto a carbon-coated copper grid at room temperature and ambient 

atmosphere. Only the grid containing the initial cadmium nanoparticles (Fig. 1A) was 

prepared and mounted in the TEM holder under an argon atmosphere. This sample was 

quickly transferred into the TEM, reducing its air exposure to around 20 s. The in situ 

TEM analysis was conducted using a JEOL 3010 equipped with a heating sample holder. 

Samples were deposited on silicon nitride membranes and heated in an ultra high vacuum 

inside the TEM. 
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Solid cadmium particles were synthesized by the decomposition of dimethylcadmium in 
trioctylphosphine oxide (TOPO) at 330°C under air-free conditions. The resulting Cd 
nanoparticles are monocrystalline, as deduced from the electron diffraction and dark field 
TEM micrographs shown in Fig. S.I. 1.  

 

Fig. S.I. 1 Bright (A) and dark (B) field TEM micrograph of the precursor cadmium 
particles. The electron diffraction pattern of the group of particles shown on A is shown 
as an inset on the bottom-right corner of the micrograph. The dark field TEM 
micrographs shown in B is obtained by selecting just one of the diffraction spots  on the 
electron diffraction pattern.  
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Our studies reveal important differences in the morphologies of surface supported and 
liquid phase metal-void structures and underline the need to consider the effect of the 
support in comparisons between colloidal and supported particles. When the Cd particles 
are supported on SiN membranes and are submerged into a solution containing sulfur, the 
intermediate Cd cores stay close to the middle of the particle, appearing highly faceted 
with mostly hexagonal geometries (Fig. S.I. 2). Under these conditions, the observed 
kinetics are very similar to the reaction of free particles in solution. However, the 
substrate plays an important role in determining the most thermodynamically stable 
structure. 
 
 

   

Fig. S.I. 2 TEM micrographs of partially reacted Cd/CdS particles while supported on a 
silicon nitride grid. 
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When reacting Cd particles with trioctylphosphine telluride (TOPTe), the resulting CdTe 
has a higher porosity than the CdS. At the same time the crystal grain domains partially 
arrange in a columnar structure, offering fast paths for ion diffusion. In such a shell, the 
Cd diffusion is very fast. This high diffusivity, in combination with the high Cd-TOPTe 
reactivity, results in a very large shell growth rate. Similar to the sulfidation of Cd, the 
CdTe reaction also involves a net outward flow of material leading to the formation of 
core-void-shell structures. However, in contrast to the Cd/CdS case, some Cd/CdTe 
heterostructures contain approximately spherical Cd cores after reaction at high 
temperatures (~ 300°C, Fig. S.I. 3). This observation points towards a similar time scale 
for Cd/vacancy self-diffusion inside the particle and across the CdTe shell. The very fast 
growth of the CdTe shell pulls out Cd2+ and injects vacancies at a very fast rate, resulting 
in a kinetic control of the core shape. 

 

 

 

Fig. S.I. 3 TEM micrographs at different tilting angles of Cd/CdTe heterostructures. 
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Fig. S.I. 4 Arrhenius plot of the literature diffusion coefficients for Cd, S and other 
elements in CdS.  
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